The Geodesic Diameter of Polygonal Domains

نویسندگان

  • Sang Won Bae
  • Matias Korman
  • Yoshio Okamoto
چکیده

This paper studies the geodesic diameter of polygonal domains having h holes and n corners. For simple polygons (i.e., h = 0), it is known that the geodesic diameter is determined by a pair of corners of a given polygon and can be computed in linear time. For general polygonal domains with h ≥ 1, however, no algorithm for computing the geodesic diameter was known prior to this paper. In this paper, we present first algorithms that compute the geodesic diameter of a given polygonal domain in worst-case time O(n) or O(n(log n + h)). The algorithms are based on our new geometric observations, part of which states as follows: the geodesic diameter of a polygonal domain can be determined by two points in its interior, and in that case there are at least five shortest paths between the two points. ∗Work by S.W. Bae was supported by the Brain Korea 21 Project. Work by Y. Okamoto was supported by Global COE Program “Computationism as a Foundation for the Sciences” and Grant-in-Aid for Scientific Research from Ministry of Education, Science and Culture, Japan, and Japan Society for the Promotion of Science.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Geodesic Diameter in Polygonal Domains∗

A polygonal domain P with n corners V and h holes is a connected polygonal region of genus h whose boundary consists of h + 1 closed chains of n total line segments. The holes and the outer boundary of P are regarded as obstacles. Then, the geodesic distance d(p, q) between any two points p, q in polygonal domain P is defined to be the (Euclidean) length of a shortest obstacle-avoiding path bet...

متن کامل

Computing the L1 Geodesic Diameter and Center of a Polygonal Domain

For a polygonal domain with h holes and a total of n vertices, we present algorithms that compute the L1 geodesic diameter in O(n2 + h4) time and the L1 geodesic center in O((n4 + n2h4)α(n)) time, respectively, where α(·) denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in...

متن کامل

Geodesic diameter of a polygonal domain in O(n^4 log n) time

We show that the geodesic diameter of a polygonal domain with n vertices can be computed in O(n logn) time by considering O(n) candidate diameter endpoints; the endpoints are a subset of vertices of the overlay of shortest path maps from vertices of the domain.

متن کامل

5. Conclusion

Let P be a simple polygon of n vertices and let S be a set of n points called sites lying in the interior of P. The geodesic-distance between two sites x and y in P is defined as the length of the shortest polygonal path connecting x and y constrained to lie in P. It is a useful notion in graphics problems concerning visibility between objects, computer vision problems concerned with the descri...

متن کامل

Computing the Geodesic Centers of a Polygonal Domain

We present an algorithm that computes the geodesic center of a given polygonal domain. The running time of our algorithm is O(n ) for any > 0, where n is the number of corners of the input polygonal domain. Prior to our work, only the very special case where a simple polygon is given as input has been intensively studied in the 1980s, and an O(n log n)-time algorithm is known by Pollack et al. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010